Signaling Pathways Regulated by Brassicaceae Extract Inhibit the Formation of Advanced Glycated End Products in Rat Brain
نویسندگان
چکیده
BACKGROUND The goal of this study was identification signaling molecules mediated the formation of AGEs in brain of rats injected with CdCl2 and the role of camel whey proteins and Brassicaceae extract on formation of AGEs in brain. METHODS Ninety male rats were randomly grouped into five groups; Normal control (GpI) and the other rats (groups II-V) were received a single dose of cadmium chloride i.p (5 μg/kg/b.w) for induction of neurodegeneration. Rats in groups III-V were treated daily with whey protein (1g/kg b.w) or Brassicaceae extract (1mg/kg b.w) or combined respectively for 12 weeks. RESULTS It was found that whey protein combined with Brassicaceae extract prevented the formation of AGEs and enhance the antioxidant activity compared with untreated group (p <0.001). Serum tumor necrosis factor (TNF-α) and interleukine (IL-6) levels were significantly decreased (p<0.01) in rats treated with whey protein and Brassicaceae extract formation compared with untreated. The combined treatment showed a better impact than individual ones (p<0.001). The level of cAMP but not cGMP were lowered in combined treatment than individual (p<0.01). CONCLUSION It can be postulated that Whey protein + Brassicaceae extract formation could have potential benefits in the prevention of the onset and progression of neuropathy in patients.
منابع مشابه
Surveying the Effect of Hydroalcoholic Extract of Allium hirtifolium on Glycated Hemoglobin Formation in In-vitro Condition
Background & Objectives: Non enzymatic glycation is a reaction that occurs between reducing sugars and amino groups of proteins. Advanced Glycation End-products (AGE) have been accounted for principal biological processes like aging and pathogenesis of some diseases. Accumulation of AGE during hyperglycemia can cause structural and functional changes of long-lived proteins. Therefore, it will...
متن کاملAdvanced Glycation End-Products and Their Receptor-Mediated Roles: Inflammation and Oxidative Stress
Glycation is a protein modification, which results in a change in a protein structure. Glycation is believed to be the etiology of various age-related diseases such as diabetes mellitus and Alz-heimer’s disease (AD). Activation of microglia and resident macrophages in the brain by glycated proteins with subsequent oxidative stress and cytokine release may be an important factor in the progressi...
متن کاملAGE proteins as a causative factor in Alzheimer's Disease
The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...
متن کاملAGE proteins as a causative factor in Alzheimer's Disease
The reaction between reducing sugars and protein free amines, known as the Maillar reaction results in the formation of advanced glycation endproducts (AGEs). AGE modification changes the structure of proteins to amyloid cross-beta structure. These protein structures can activate receptors known as RAGE on glial cells (microglia and astrocytes), and induce the expression of inducible nitric oxi...
متن کاملThe effect of flavonoids in the treatment of Alzheimer’s disease: review article
Alzheimer’s disease (AD) is the most prevalent age-related neurodegenerative disorder worldwide, and no cure or prevention has been found for it. Extracellular senile plaque and intracellular neurofibrillary tangles are two important histopathological hallmarks of AD, which are both harmful for the cell. Senile plaques are composed of amyloid beta and neurofibrillary tangles are formed by hyper...
متن کامل